翻訳と辞書 |
Generating function (physics) : ウィキペディア英語版 | Generating function (physics) Generating functions which arise in Hamiltonian mechanics are quite different from generating functions in mathematics. In physics, a generating function is, loosely, a function whose partial derivatives generate the differential equations that determine a system's dynamics. Common examples are the partition function of statistical mechanics, the Hamiltonian, and the function which acts as a bridge between two sets of canonical variables when performing a canonical transformation. ==In Canonical Transformations== There are four basic generating functions, summarized by the following table: \,\! and |- | | and |- | | and |- | | and |}
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Generating function (physics)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|